

Sitesbay.com

A Perfect Place for All Tutorials Resources

Java Projects | C | C++ | DS | Interview Questions | JavaScript

|

www.sitesbay.com

Core Java | Servlet | JSP | JDBC | Struts | Hibernate | Spring

|

Java Projects | C | C++ | DS | Interview Questions | Html | CSS

| Html5 | JavaScript | Ajax | Angularjs | Basic Programs | C

Project

Java Project | Interview Tips | Forums | Java Discussions

DESIGN PATTERN

By SEKHAR SIR
[Thursday, May 29, 2014]

Recursive Problem:-

 If some problem occurs again and again in a particular context then we call it as a Recursive

Problem.

 For example, if an audio player having support with MP2 files gets problem for MP3 files and

having support for MP3 gets problem MP4. So it is a recursive problem.

 In a software application, for example a recursive problem will be transferring the data across

layers.

Q. Why Design Patterns?

Ans:-

 Design patterns are used for solving recursive problems in a software application design.

 A design pattern is a description for how to solve a recursive problem.

 Design patterns are not a technology or a tool or a language or a platform or a framework.

 Design patterns are effective proven solutions for recursive problems.

Q. How many Design Patterns?

Ans:-

 Actually, there is no fixed count of no of design patterns because design patterns is not a package

and not in the form of classes.

 SUN Microsystems constituted a group with four professional with the name of Gang of Four

(GOF) to find effective solutions for the recursive problems.

 According to GOF, they found 23 design patterns as effective solutions for re-occurring

problems.

 GOF divided java design patterns into 4 categories

(a) Creational Design Patterns:-

(1) Singleton Pattern.

(2) Factory Pattern

(3) Abstract Factory Pattern

(4) Builder Pattern

(5) Prototype Pattern

(b) Structural Design Pattern

(1) Adaptor Pattern

(2) Proxy Pattern

(3) Composite Pattern

(4) Flyweight Pattern

(5) Façade Pattern

(6) Bridge Pattern

(7) Decorator Pattern

(c) Behavioral Design Pattern

(1) Template Method Pattern

(2) Mediator Pattern

(3) Chain of responsibility pattern

(4) Strategy Pattern

(5) Command Pattern

(6) Visitor Pattern

(7) Iterator Pattern

(d) J2EE Design Pattern

(1) Intercepting Filter

(2) Front Controller

(3) Composite View

(4) View Helper

(5) Service Locator

(6) Business delegate

(7) Data Transfer Object

(8) Data Access Object

(9) Inversion of Control

[Friday, May 30, 2014]

toString() method:-

 toString() method is a method of java.lang.Object class.

 When we pass an object, as parameter to the output statement internally toString() method of that

object will be called.

 If an object overrides toString() method then overridden toString() method will be called

otherwise Object class toString(0 method will be called.

 If Object class toString() method is called then it returns classname@unsigned hexadecimal

fromat of hashcode.

Example1:-

class Test

{

 int a;

 Test(int a)

 {

 this.a=a;

 }

}

class Main

{

 public static void main(String args[])

 {

 Test test=new Test(10);

 System.out.println(test);

 }

}

 Output:-Test@4fD567

 Example2:-

class Test

{

 int a;

 Test(int a)

 {

 this.a=a;

 }

public String toString()

{

 return "Value : "+a;

}

}

class Main

{

 public static void main(String args[])

 {

 Test test=new Test(10);

 System.out.println(10);

 }

}

Output:- Value:10

equals() and = = operator :-

 In java Objects are compare in 2 ways.

1. Identical comparison (= =)

2. Meaningful comparison (equals())

 Identical comparison means whether 2 references are referring a single object or not.

 Meaningful comparison means whether 2 objects are equal according to the values or not.

 In a class, if equals method is not overridden then there will be no difference between equals()

method and = = operator. Because equals() methods of Object class internally use = = operator

only.

 If we assign an integer literal between the range of -128 to 127, then internally jvm creates a

single object and makes other object as references to that single object.

Example1:-

Integer i1=100;

Integer i2=100

i1==i2 --> true

i1.equals(i2) --> true

Example2 :-

Integer i1=200;

Integer i2=200;

i1==ii2 --> false

i1.equals(i2) --> true

Example3 :-

Integer i1=129;

Integer i2=159;

i1==i2 --> true

i1.equals(i2) --> false

[Tuesday, June 03, 2014]

 If we want to compare two objects meaningfully then we must override equals() method in that

class.

 If we do not override equals() method, then super class (Object class) equals() method of Object

class internally uses (= =) operator. So there is no difference between equals and = = operator in

Object.

Example:-
class Test

{

 int x;

 Test(int x)

 {

 this.x=x;

 }

}

class Main

{

 public static void main(String args[])

 {

 Test t1= new Test();

 Test t2= new Test();

 if(t1==t2)

 {

 System.out.println("t1 and t2 are identically equal");

 }

 if(t1.equals(t2))

 {

 System.out.println("t1 and t2 are meaningfully equal");

 }

 }

}

Output: no output

 There is no output for the above example, because in Test class equals() method is not

overridden. So equals and = = operator both are one and same.

 We can override equals() method of object class in Test class like the following.

@Override

public boolean equals(Object obj)

{

 if(obj instanceOf Test && (((Test)obj).x==this.x))

 return true;

 else

 return false;

}

 instanceOf operator checks an object at left side belongs to a class at right side or not.

 After overriding equals() method, the output of above example is t1 and t2 are meaningfully

same.

Note:- public boolean equals(Test obj){----}--->overloading equals() method.

 public booelan(Object obj){----}--->overriding equals() method

hashCode() method:-

 It is a native method of java.lang.Object class.

 In java, native methods are JVM dependent. It means their implementation exists in JVM.

 If hashCode() method of Object class is not overridden by a class then hashCode() of

object class returns an int value by converting memory address of an object into int

value.
[Wednesday, June 04, 2014]

 hashCode is not a memory address . It is an integer format of an object data.

 If hashCode() method is not overridden then the hashCode is an integer format of an object

memory.

 In each class hashCode() method can be overridden. But the classes whose objects are going to be

used as keys in a hash table and hast map must be overridden by hashCode() method.

 In all wrapper classes like Integer, Double, Float etc and String class hashCode() method is

overridden.

hashCode() in String class:-

 In String class hashCode() method is overridden and the hashCode of a string is

calculated by using the formula s[0]*31n-1+s[1]*31n-2+……………+s[n-1].

 If two strings are equal according to equals() method then their hashCode() are definitely

same.

String str=new String("AB");

Strign str2=new String("AB");

str.hashCode(); ---->2081

str2.hashCode();----->2081

 If two strings have same hashCode then they may or may not be equal according to

equals() method

String str=new String("Aa");

Strign str2=new String(“BB");

str.hashCode(); ---->2112

str2.hashCode();----->2112

 In the above example hashCode are same and the strings are unequal. So two unequal

strings may produce either same hashCode or different hashCode.

 If two strings are unequal according to equals() method then there is no guarantee that

they produce dustings hashCode.

String str=new String("FB");

Strign str2=new String("ab");

str.hashCode(); ---->2236

str2.hashCode();----->3105

 Here hashCode() are distinct and two strings are unequal.

Q. If two strings are equal according to equals() then hashCodes are same?

Ans:-Same

Q. If two strings hashCode is same then they are equal according to equals() method?

Ans:-May or May not

Q. If two strings are unequal according to equal method then they produce distinct hashCode?

Ans:-May or May not

Q. If two strings hashCode is different then they have unequal according to equals(0 mehod.

Ans:-Yes
[Thursday, June 05, 2014]

Q. When to override hashCode() and equals() method in a class?

Ans:-When we are working with hashing collections like Hashtable,HashSet and HashMap then the data

will be stored internally in the form of hash buckets and each bucket has an identification number called

hashCode

 While storing an element in a Hashtable and HashMap then first hashCode of he key is found and

then that key value pair is going to be stored int that bucket.

 In order to find the hashCode internally hashCode() method of the key will be called.

for example,

Hashtable table=new Hashtable();

table.put("A",1000);

table.put("Aa",1000);

table.put("BB",3000);

table.put("FB",5000);

table.put("Ea",4500);

A----65

Aa---2112

BB---2112

FB---2236

Ea---2236

 Bucket-65 Bucket-2112 Bucket-2236

 While retrieving the value of a key from a Hashtable or a HashMap, then first hashCode(0

method is called in the given key to find the right bucket and then equals() method is called to

search for that key in that bucket.

 While searching for a key in a Hashtable and HashMap then internally first hashCode() method is

called after that equals() method is called.

 So if we want to use any java classes object as key in Hashtable and HashMap collection then that

hashCode() method and equals() method must be overridden.

[Friday, June 06, 2014]

Creational Design Pattern:-

 Creational Design Pattern deals with object creation.

 Creational Design Pattern tries to create objects according to the requirement.

 Creational Design Pattern hides object creation process from the client applications.

 Singleton design pattern says those create one instance (object) of a class and provide a global

access point for that instance.

 Generally if a class has a fixed functionality and it does not differ for any no. of object created for

that class then we make that class as Singleton class.

 If multiple objects are created further same functionality then the memory for the entire

remaining object will be canted. So to reduce the memory wastage, we make that class as

Singleton.

For example,

Suppose, we create a class for reading a properties file data into properties file data into

properties object and returning that properties class object to the other classes.

 Here the logic in a class is fixed and if multiple objects are created for that class then the memory

will be wasted. So we make that class as Singleton class

 The other classes we use the one instance of the class and reach the properties object from that

class.

 Other Class1 Properties File

 Singleton

 One class

 Other Class2

 Another example we find in Real time is, while obtaining connection from connection pool by

multiple programs, one data-source object is acting as Singleton object.

 A 1000 Aa 1000

 BB 3000

 FB 5000

 Ea 4500

 props

Program 1 Connection Pool

Program2

Program3

Different ways of making a class as Singleton:-

Approach1:-

 We can make a class as a static class. A static class is implicitly a Singleton class.

 To make a static class, we need to make all properties and methods as static methods and make

the constructer of that class as private.

Approach2:-

 If we want to make a class as Singleton then object creation of that class should not allowed from

outside of the class. To restrict an object creation of class from outside, we need to make

constructer of that class as private.

[Saturday, June 07, 2014]

 We need to create one object of that class inside the class and then we need to define a public

static factory method to return the one object to the other classes.

For example,

public class OnlyOne

{

 private OnlyOne(){}

 public static OnlyOne getInstance()

 {

 return onlyone;

 }

}

class Simple

{

 public static void main(String args[])

 {

 OnlyOne onlyone=OnlyOne.getInstane();

 OnlyOne onlyone2=OnlyOne.getInstance();

 System.out.println(onlyone == onlyone2);

 System.out.println(OnlyOne.hashCode()==OnlyOne.hashCode());

 }

}

Output: true

 true

 In the above code, the one object of class created at class load time. It means the object is early

created.

 The drawback of early creation is if the object is not used by any other classes then the object

memory is wastage.

 D
A

T
A

 S
O

U
R

C
E

Approach3:-

 We can create the one object of the Singleton class inside the static factory method. So that we

can create the one object lazily and hence we can avoid the memory wastage problem of the

above approach.

 In a multi-threading environment, if two threads are simultaneously calling the static factory

method, then two objects of Singleton class will be created. So the Singleton principle is violated.

 To solve the concurrent issue, we need to make the static factory method as a synchronized

method.

 If a method is synchronized then only one thread is allowed to access it simultaneously. So that

the object for the class will be created only for once.

public class OnlyOne

{

 private static OnlyOne onlyone=null;

 private OnlyOne(){}

 public synchronized static OnlyOne getInstance()

 {

 if(onlyone=null)

 {

 onlyone=new OnlyOne();

 }

 return onlyone;

 }

}

 The above Singleton class is an appropriate way of making the class as Singleton. But if another

class clones an object of the Singleton class then one more object of Singleton class will be

created. It means again Singleton principle is violated.

Approach4:-

 To make a java class as 100% Singleton class, we should not allow object cloning.

 In order to restrict the cloning, we should override clone() method in Singleton class by

implementing that class from Cloneable interface.

public class OnlyOne implements Cloneable

{

 private static OnlyOne onlyone=null;

 private OnlyOne(){}

 public synchronized static OnlyOne getInstance()

 {

 if(onlyone=null)

 {

 onlyone=new OnlyOne();

 }

 return onlyone;

 }

 public Object clone() throws CloneNotSupportedException

 {

 throw new CloneNotSupportedException;

 }

}

[Monday, June 09, 2014]

Factory Design Pattern:-

 When we want to meet the following requirements then we apply factory design pattern.

(1) We want to hide the object creation process.

(2) We want to hide which subclass object is created of a class or interface.

(3) We want to make object creation process as reusable for the entire application.

 Factory design pattern and factory method design pattern, both are one and same.

 The mostly used design pattern across multiple technologies and framework of java is the factory

design pattern.

Example1:-

 In JDBC, we are obtaining a connection with a database by calling getConnection() method.

 Our application is a client application and our application does not need how and which

connection class object is created, but it needs a connection object.

 So getConnection() method hides the object creation process and simply returns a connection

object needed.

Connection con=DriverManger.getConneciton(url,uname,pwd);

 In the above statement factory design pattern is applied.

Example2:-

 In java.net package, there is a class is called URL and its openConnection() method returns an

object of type URLConneciton, by hiding the creation process and also by hiding the details of

which class object is created. So here also a factory design pattern.

URL url= new URL(String url);

URLConnection connection=url.openConnection();

The following example creates a static factory method to return a object of type Person to the client

application.

C:\FactoryPattern\

public interface Person

{

void wish(String name);

}

//Male.java

class Male implements Person

{

 @Override

public void wish(String name)

 {

 System.out.println("Welcome Mr. "+name);

 }

}

//Female.java

Person(i)

wish(String)

Male(c)

wish(String)

Female(c)

wish(String)

PersonFactory(c)

 static Person getPerson(String)

public class Female implements Person

{

 @Override

 public void wish(String name)

 {

 System.out.println("Welcome Miss/Mrs "+name);

 }

}

//PersonFactory.java

public class PersonFactory

{

 public static Person getPerson(String type)

 {

 if(type.equals("M"))

 {

 return new Male();

 }

 else if(type.equals("F"))

 {

 return new Female();

 }

 else

 return null;

 }

}

//Client.java

class Client

{

 public static void main(String args[])

 {

 Person person=PersonFactory.getPerson(args[0]);

 person.wish("XYZ");

 }

}

Abstract Factory Design Pattern:-

 Abstract Factory is a factory of factories.

 If factory design pattern is again applied on a factory class, i.e. if we apply factory on factory then

we will get Abstract Factory.

 We have to use this abstract factory design pattern, when we want to return one factory object

among a family of factory objects.

For example, in JAX-P (Java API for XML parsing), a DocumentBuilderFactory is a factory for

DocumentBuilder object. Again DocumentBuilder is a factory for Document object. So

DocumentBuilderFactory is called abstract factory.

DocumetnBuilder builder=DocumentBuilderFactory.getInstance();

Document document=builder.getDocument();

[Tuesday, June 10, 2014]

 In the following example, we are applying factory on factory.

 In the example, AnimalAbstractFactory is a factory for producing AnimalFactory and

AnimalFactory is a factory for producing Animal.

Animal(i) Animal Factory(i)

Elephant(c) Shark(c) LandFactory(c) SeaFactory(c)

 AnimalAbstractFactory(c)

AbstractFactory

 Animal.java

 Elephant.java

 Shark.java

 AnimalFactory.java

 SeaFactory

 LandFactory

 AnimalAbstractFactory

 Test.java

//Animal.java

public interface Animal

{

 void breathe();

}

//Elephant.java

public class Elephant implements Animal

{

 public void breathe()

 {

 System.out.println("Elephant is Breathing");

 }

}

//Shark.java

public class Shark implements Animal

{

 public void breathe()

 {

 System.out.println("Shark is Breathing");

 }

}

//AnimalFactory.java

public interface AnimalFactory

{

 Animal getAnimalInstance();

}

//LandFactory.java

public class LandFactory implements AnimalFactory

{

 public Animal getAnimalInstance()

 {

 return new Elephant();

 }

}

//SeaFactory.java

public class SeaFactory implements AnimalFactory

{

 public Animal getAnimalInstance()

 {

 return new Shark();

 }

}

//AnimalAbstractFactoy.java

public class AnimalAbstractFactory

{

 public static AnimalFactory

 getAnimalFactoryInstance(String type)

 {

 if(type.equals("water"))

 return new SeaFactory();

 else

 return new KLandFactory();

 }

}

//Test.java

public class Test

{

 public static void main(String args[])

 {

 AnimalFactory af=AnimalAbstractFactory.getAnimalFactoryInstance(args[0]);

 Animal a=af.gerAnimalInstance();

 a.breathe();

 }

}

Compile and Run the application.

Prototype Design Pattern:-

 This design pattern is applies when an object creation for a class is a costly (time-taking)

operation.

 This design pattern says that, instead of re creating a costly object of a class, create one object of

the class and put it in cash and then return a clone of it to the clients whenever it is asked.

 While cloning an object a duplicate object of the original object is created by without invoking a

constructer of the class.

 This prototype design pattern will help to improve the performance of an application.

 Cloning an object is nothing but making an identical copy of an existing object.

 After cloning, the original object and cloned object will have separate memories.

 If we want to clone any java class objects then that class must be implement java.lang.Cloneable

interface and it is a marker interface.

 In a class, we should override clone() method of Object class.

For example:-

public class Test implements Cloneable

{

 public Object clone() throws cloneNotSupportedException

 {

 }

}

 There 2 types of cloning

(a) Shallow Cloning (b) Deep Cloning

 In shallow cloning, only primitive properties of an object are cloned but its reference type is not

cloned.

 In deep cloning, both primitive types and also reference types of an object are closed.

[Wednesday, June 11, 2014]

 In the following example, we are cloning Employee class object and it contains a reference of

Department class.

 We are applying shallow cloning, which means the original and cloned object of Employee will

share a single object of department.

Shallow Clone

 Employee.java

 Department.java

 TestCloning.java

//Employee.java

public class Employee implements Cloneable

{

 private int employeeId;

 private String employeeName;

 private Department department;

 public Employee(int id, String name, Department dept)

 {

 this.employeeId=id;

 this.employeeName=name;

 this.department=dept;

 }

 @Override

 public Object clone() throws CloneNotSupportedException

 {

 return super.clone();

 }

}

 //create setter and getters for the private properties.

//Department.java

public class department

{

 private int id;

 private stirng name;

 public department(int id, String name)

 {

 this.id=id;

 this.name=name;

 }

}

//create setters and getters

//TestCloning.java

public class TestCloning

{

 public static void main(String args[])throws CloneNotSupportedException

 {

 Department hr=new Department(10,"Human Resource");

 Employee original=new Employee(1,"Admin",hr);

 Employee cloned=(Employee)original.clone();

 //Let change the deparment name in cloned object and we will verify in original object

 cloned.getDepartment().setName("Finance");

 System.out.println(original.getDepartment().getName());

 }

}

 In the above client application, the original object and cloned object of Employee are sharing a

single object (same object) of Department. So the changes made by cloned object on Department

object will affect on original object also.

 The output of the above client application is Finance.

original hr

 cloned

 Deep Clone

 In case of deep cloning, along with primitive types reference types are also cloned. So changes

made by original object on department will not affect on cloned object and vice versa.

 If we want to clone Employee object with deep cloning then the following changes are needed.

(1) Override clone method in Employee class like the following

protected Object clone() throws CloneNotSupportedException

{

 Employee cloned= (Employee)super.clone();

 cloned.setDepartment((Department)cloned.getDeparment().clone());

 return cloned;

}

(2) Implement Department class from Cloneable interface and override clone method in

Department class like the following.

@Override

protected Object clone() throws CloneNotSupportedException

{

employeeId=1;
employeeName=”Admin”

department

employeeId=1;
employeeName=”Admin”

department

id no=10;
name=”Human

Resource”

 return super.clone();

}

 Original hr

 Cloned h r

 In the following example we are applying prototype design pattern for objects of type Shape

class.

 We are creating objects of type shape and putting in a Hashtable and a clone object of cached

object is returned for the client.

In this example, Hashtable object is acting as chche

Prototype

 Shape.java

 Circle.java

 Square.java

 Rectangle.java

 ShapeCache.java

 Main.java

public abstract class Shape implements Cloneable

{

private String id;

protected String type;

abstract void draw();

public String getType()

{

return type;

}

}

create getter and setter for id

public Object clone()

{

 Object clone=null;

try

{

employeeId=1;
employeeName=”Admin”

department

id no=10;
name=”Human

Resource”

employeeId=1;

employeeName=”Admin”

department

id no=10;
name=”Human

Resource”

 clone=super.clone();

}catch(CloneNotSupportedException e)

{

 e.printStackTrace()

}

return clone();

}

public class Circle extends Shape

{

 public Circle()

 {

 type="Cirlce";

 }

 @OVerride

 public void draw()

 {

 System.out.println("inside circle :: draw() method");

 }

}

public class Square extends Shape

{

public Square()

{

 type="Square";

}

@Override

public void draw()

{

System.out.println("inside Square :: draw() method");

}

}

public class Rectangle extends Shape

{

public Rectangle()

{

 type="Rectangle";

}

@Override

public void draw()

{

System.out.println("inside Rectangle :: draw() method");

}

}

import java.util.Hashtable;

public class ShapeCache

{

 private static Hashtable<String,Shape> ht=new Hashtable<String,Shape>();

 public static Shape getShape(String shapeId)

 {

 Shape cachedShape=ht.get(shapeID);

 return (Shape)cachedShape.clone();

 }

 public static void loadCache();

 {

 Circle cirlce=new Circle();

 circle.setId("1");

 ht.put(circle.getId(),cirlce);

 Square square=new Square();

 square.setId("2");

 ht.put(square.getId(),square);

 Rectangle rectangle=new Rectangle();

 rectangle.setId("3");

 ht.put(rectangle.getId(),rectangle);

 }

}

public class Main

{

 public static void main(String args[])

 {

 ShapeCache.loadCache();

 Shape clonedShape=ShapeCache.getShape("1");

 System.out.println("Shape:"+clonedShape.getType());

 Shape clonedShape2=ShapeCache.getShape("2");

 System.out.println("Shape:"+clonedShape2.getType());

 Shape clonedShape3=ShapeCache.getShape("3");

 System.out.println("Shape:"+clonedShape3.getType());

 Shape cloneShape1=ShapeCache.getShape("1");

 System.out.println("Shape:"+clonedShape1.getType());

 System.out.println(clonedSahpe.hashCode());

 System.out.println(clonedSahpe1.hashCode());

 }

}

[Thursday, June 12, 2014]

 This design pattern is used, to separate construction process of an object to re-use the same

construction process for representing that object in different ways.

 This builder design pattern will make use of same construction process to represent an object in

another different way in future.

 For example, we have a complex object are called House and its construction process will be

same for different representations of the house. So we can separate the construction process and

we can reuse it for multiple representations with the help of builder design pattern.

 For example, if we want wooden representation of House or Ice representation of house then

same construction process to be follow for the different representations.

Builder

 House.java

 HouseBuilder.java

 IglooHouseBuilder.java

 TipiHouseBuilder.java

 BuliderSample.java

//House.java

public class House

{

 private String basement;

 private String structure;

 private String roof;

 private String interior;

 //Create setter methods of above

 public String toString()

 {

 String

str="Basement:"+basement+"\n"+"Structure:"+structure+"\n"+"Roof:"+roof+"\n"+"Interion:"+int

erior;

 return str;

 }

}

//HouseBuilder

public interface HouseBuilder

{

 public void buildBasement;

 public void buildStructure;

 public void buildRoof;

 public void buildInterior;

 public void constructHouse();

 public House getHouse();

}

//IglooHouseBuilder

public class IglooHouseBuilder implements HouseBuilder

{

 private House house;

 public IglooHouseBuilder()

 {

 this.house= new House();

 }

 pbulic void buildBasement()

 {

 house.setBasement("Ice Bars");

 }

 public void buildStructure()

 {

 house.setStructure("Ice Blocks");

 }

 public void buildInterior()

 {

 house.setInterior("Ice Carvings");

 }

 public void buildRoof()

 {

 house.setRoof("Ice Dome");

 }

 publi void costructHouse()

 {

 this.buildBasement();

 this.buildStructure();

 this.buildRoof();

 this.buildInterior();

 }

 public House getHouse()

 {

 return this.house;

 }

}

//TipiHouseBuilder

public class TipiHouseBuilder implements HouseBuilder

{

 private House house;

 public TipiHouseBuilder()

 {

 this.house= new House();

 }

 pbulic void buildBasement()

 {

 house.setBasement("Wooden Poles");

 }

 public void buildStructure()

 {

 house.setStructure("Wood and Ice");

 }

 public void buildInterior()

 {

 house.setInterior("Fire Wood");

 }

 public void buildRoof()

 {

 house.setRoof("Wood Skins");

 }

 publi void costructHouse()

 {

 this.buildBasement();

 this.buildStructure();

 this.buildRoof();

 this.buildInterior();

 }

 public House getHouse()

 {

 return this.house;

 }

}

//HouseBuilderFactory.java

public class HouseBuilderFactory

{

 public static HouseBuilder

 getHouseBuilderInstance(String type)

 {

 if(type.equals("Igloo"))

 return new IglooHouseBuilder();

 else if(type.equals("Tipi"))

 return new TipiHouseBuilder

 else

 return null;

 }

}

//BuilderSample.java

class BuilderSample

{

 public static void main(String args[])

 {

 HouseBuilder builder=HouseBuilderFactory.getHouseBuilderInstance(args[0]);

 builder.constructHouse();

 House house=builder.getHouse();

 System.out.println(house);

 }

}

Output:

C:\ java BuilderSample Igloo

Basement: Ice Bars

Structure: Ice Blocks

Roof: Ice Dome

Interior: Ice Carvings

House ------ Complex Object

HouseBuilder----Constructio process

TipiHouseBuilder----representation -1 of house

IglooHouseBuilder----representation-2 of house

Structural Design Pattern:-

 These categories of design patterns talks about aggregation and composition of object. It means

they talks about HAS-A-Relationship between objects.

 In HAS-A Relationship, one object contains another object. The one object is called container

object and another object is called contained object.

 For example, Library class object contains Book class object. So Library object is container

object and book object is contained object.

 An Aggregation, a contained object can exists independently without container object also

without a container object.

 I composition, a contained object cannot exist without a container object.

 For example, a Book object can exist without a Library. So there is aggregation between Library

and Book object.

 For example, a Department object cannot exist without a College object. So there is a

composition between College and Department object.

[Friday, June 13, 2014]

Proxy Design Pattern:-

 Proxy is a term indicates “in place of” or “on behalf of “.

 For example, ATM is a proxy for a bank.

 Proxy design pattern is used in the following cases.

(1) When we want to efficiently manage the memory of expensive objects.

(2) When we want to control the access to a real object.

(3) When we want to represent an object resided at one jvm at another jvm.

 In web applications, a filter acts as a proxy for a servlet.

 In distributed applications with RMI, CORBA, EJB and Web-services, proxy objects are created

for client and server objects of communication, for representing server object at client side and

client object at server side.

 Proxy Objects are 2 types

(1) Remote Proxy (2) Virtual Proxy

 If the proxy object is representing a real object belongs to same jvm then it is called virtual proxy.

 If proxy object is representing a real object of another jvm then we call it as remote proxy.

Flyweight Design Pattern:-

 While creating multiple objects of a class, if multiple objects contain some common data across

objects and some uncommon data across objects then flyweight design pattern is applied.

 If memory allocated separately for common data across multiple objects of a class then more

memory is consumed and it leads to poor performance.

 In order to reduce the memory consumption and also to improve the performance we need to

separate common data into one object and then we need to share it across multiple objects. This is

called a flyweight design pattern.

 ***** There is a difference between flyweight design pattern and static members. If we make

common data as static members then the static members become common to all objects of the

class but not for some objects of the class.

 According flyweight design pattern the common data is classed intrinsic data and uncommon

data is called extrinsic data.

 For example,

public class IdCard

{

 private String companyName;

 private String division;

 private in empno;

 private String empnae;

}

 The above class is for creating id cards for employees of the company working at each

division.

 For example, if there are 50 employees are working at division 1 then the company name

and division are common data for 50 employees.

 In order to reduce the memory consumption, we can separate company name and division

into one object and we can share it for 50 employees.

 If separated like the above statement then flyweight design pattern is applied.

 In the above Idcard class intrinsic data is companyName and division and extrinsic data is

employeeNumber and employeeName.

[Saturday, June 14, 2014]

Flyweight Design Pattern:-

 Flyweight

o Icard.java

o IntrisicFactory

o Main.java

public class Icard

{

 private stirng empname;

 private int empid;

 private Intrinsic intr;

 public Icare(String empname, int empid, Intrinsic intr)

 {

 this.empname=empname;

 this.empid=empid;

 this.intr=intr;

 }

 public void print()

 {

 System.out.println("Empname:"+empname);

 System.out.println("Empid:"+empid);

 System.out.println("Comp Name:"+intr.getCompName());

 System.out.println("Division"+intr.getDivision());

 }

}

public interface Intrinsic

{

 String getDivision();

 String getCompName();

}

import java.util.*;

public class IntrinsicFactory

{

 public static Map<String, Intrinsic> m=new HashMap<String,Intrinsic>();

 public static count;

 public static Intrinsic getIntrinsic(String division)

 {

 if(m.containsKey(division))

 {

 Object o=m.get(division);

 Intrinsic i=(Intrinsic)o;

 return i;

 }

 else

 {

 Intrinsic intr=new IntrinsicFactory.IntrinsicClass("SYZ Ltd",division);

 m.put(division,intr);

 return intr;

 }

 }

 private static class IntrinsicClass implements Intrinsic

 {

 private String division;

 private String compName;

 private IntrinsicClass(String compName,String division)

 {

 this.compName=compName;

 this.division=division;

 count++;

 System.out.println("No of intrinsic objects: "+count);

 }

 @Override

 public String getDivision()

 {

 return division;

 }

 public String getCompName()

 {

 return compName;

 }

 }

}

class Main

{

 public static void main(String args[])

 {

 Icard ic1=new Icard("A",111,InstrincFactory.getInstrinc("COMP"));

 Icard ic2=new Icard("B",112,InstrincFactory.getInstrinc("COMP"));

 Icard ic3=new Icard("C",901,InstrincFactory.getInstrinc("FIN"));

 Icard ic4=new Icard("D",902,InstrincFactory.getInstrinc("COMP"));

 ic1.print();

 System.out.println("=====================");

 ic2.print();

 System.out.println("=====================");

 ic3.print();

 System.out.println("=====================");

 ic4.print();

 System.out.println("=====================");

 }

}

Compile and Execute.

No of Intrinsic Object=1;

No of intrinsic object=2;

Emp Nmae :A

Comp Name : XYZ Ltd

Division :COMP

.

.

.

.

 While defining one class in another class, if we put static keyword for the inner class then it

becomes as nested class.

 If we put an inner class or a nested class with private modifier then an object of that class cannot

be created at outside of its outer class.

 In the above example code, the factory method of IntrinsicFactory class checks whether an

intrinsic object of a division existing in Map object or not.

 If exists then returns the same intrinsic object and if not then creates a new intrinsic object puts it

in Map and then returns it.

 The no of intrinsic object created in above example are two.

[Monday, June 16, 2014]

Façade Design Pattern:-

 When there are multiple sub-systems are needed to invoke from a client for an operation then

façade design pattern is used.

 Façade pattern hides the complexity of calling multiple subsystem form a client, by providing a

high level system.

 A client invokes a façade and façade invokes the multiple subsystems and finally returns the

result back to the client.

Example1:-

If there is a requirement that the result of class1 of pack1 is needed as input for calling class2 of

pack2, in order to get the desired final output then client has to call class1 and then followed by

class2.

Client Class1 Class2

If façade is applied for the above diagram then it becomes like the following.

Client Façade Class1 Class2

Example2:-

If you want to transfer the money from accout1 to account2 then the two subsystems to be

invoked are withdraw from account1 and deposit to accoutn2.

 Client Class1 Class2

 If façade pattern is applied then the result will be like the following.

Client Façade Class1 Class2

Decorator Design Pattern:-

 This design pattern is used when we want to add some additional functionality to some objects of

a class at runtime but not for all objects of a class.

 If additional behavior is added for a class is extending it from some super class then the

additional behavior is added for all object of the class but not for some objects.

Example1:-

Using BufferedReader class object, we can add a special behavior at runtime for one Reader

object. So BufferedReader is a decorator of Reader object.

Example2:-

Suppose we have a Window class and we have 3 objects for it. We want to add scrollbars for one

window object but not for all window objects then we apply decorator design pattern.

Window w1=new Window();

Window w2=new Window();

Window w3= new Window();

ScrollBarsDecorator window= new ScrollBarsDecorator(w3);

In the following example, we are applying Decorator design pattern for decoration 2 Dollar class

objects among 4 objects of Dollar class.

C:\Decorator

 Currency.java

 Rupee.java

 Dollar.java

 Decorator.java

 AUSDDecorator.java

 SGDDecorator.java

 Main.java

C:\Decorator

abstract class Currency1

{

 public String description;

 public Currency1()

 {

 description="unknown";

 }

 public String getDescription()

 {

 return description;

 }

 abstract dcouble cost(double value);

}

public class Rupee extend Currency1

{

 public Rupee()

 {

 description="Rupee";

 }

 public double cost(double value)

 {

 return value;

 }

}

public class Dollar extend Currency1

{

 public Dollar()

 {

 description="Dollar";

 }

 public double cost(double value)

 {

 return value;

 }

}

public class Decorator

{

 abstract String getDescription();

}

public class AUSDDecorator extends Decorator

{

 Currency1 currency1;

 public AUSDDecorator (Currency1 currency1)

 {

 this.currency1=currency1;

 }

 public String getDescription()

 {

 String str=currency1.getDescription()+"It's Australlin Dollar"

 return str;

 }

}

public class SGDDecorator extends Decorator

{

 Currency1 currency1;

 public SGDDecorator (Currency1 currency1)

 {

 this.currency1=currency1;

 }

 public String getDescription()

 {

 String str=currency1.getDescription()+"It's Singapore Dollar"

 return str;

 }

}

public class Main

{

 public class void main(String args[])

 {

 Currency1 c1=new Rupee();

 System.out.println(c1.getDescription());

 Currency1 c2=new Dollar();

 Currency1 c3=new Dollar();

 Currency1 c4=new Dollar();

 Currency1 c5=new Dollar();

 AUSDDecorator d1= new AUSDDecorator(c3);

 SGDDEcorator d1=new SGDDEcorator(c5);

 System.out.println(d1.getDescription());

 System.out.println(c2.getDescription());

 System.out.println(c4.getDescription());

 System.out.println(d2.getDescription());

 }

}

